BIOSAND FILTER: AN ALTERNATIVE TO TREAT DRINKING WATER AT A HOUSEHOLD LEVEL

Joann Marie Rodríguez
PhD Student
UMass Amherst EWRE
Access to clean water is “essential to the realization of all human rights”
United Nations General Assembly under the Resolution 64/292
Intermittent Slow Sand Filter

- Adaptation of a traditional slow sand filter
- Filtration rate: 400 L/hr/m²
- Designed by Dr. David Manz (1991)
- Implemented in more than 70 countries
- Appropriate technology
 - Low cost
 - Materials availability
 - Operational simplicity

1. Reservoir Zone
2. Standing water Zone
3. Biological Zone
4. Non-Biological Zone
5. Gravel Zone
How to build a biosand filter?
How to build a biosand filter?
MEDIA

- **Find the medium:**
 - Crushed rock
 - River sand
 - **Sieve**

- **Drainage Gravel**
 - 6 - 12mm

- **Separating Gravel**
 - 1 - 6mm

- **Filtration sand**
 - < 0.7 mm

- **Depth:**
 - 1"
 - ½"
 - 6"
DIFFUSER

Diffusor:
To prevent any disturbance sand surface

Material:
Corrugated Plastic
Plastic
Metal
Turbidity

- Measure of the cloudiness of water
- Nephelometric turbidity units (NTU)
- Naked eye > 5 NTU
- Consists of:
 - Mud
 - Silt
 - Sand
 - Chemical precipitates
 - Bacteria
 - Algae
Turbidity tube

Depth (cm) = 244.13 (NTU)^{-0.662}

<table>
<thead>
<tr>
<th>cm</th>
<th>NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>240</td>
</tr>
<tr>
<td>7.3</td>
<td>200</td>
</tr>
<tr>
<td>8.9</td>
<td>150</td>
</tr>
<tr>
<td>11.5</td>
<td>100</td>
</tr>
<tr>
<td>17.9</td>
<td>50</td>
</tr>
<tr>
<td>20.4</td>
<td>40</td>
</tr>
<tr>
<td>25.5</td>
<td>30</td>
</tr>
<tr>
<td>33.1</td>
<td>21</td>
</tr>
<tr>
<td>35.6</td>
<td>19</td>
</tr>
<tr>
<td>38.2</td>
<td>17</td>
</tr>
<tr>
<td>40.7</td>
<td>15</td>
</tr>
<tr>
<td>43.3</td>
<td>14</td>
</tr>
<tr>
<td>45.8</td>
<td>13</td>
</tr>
<tr>
<td>48.3</td>
<td>12</td>
</tr>
<tr>
<td>50.9</td>
<td>11</td>
</tr>
<tr>
<td>53.4</td>
<td>10</td>
</tr>
<tr>
<td>85.4</td>
<td>5</td>
</tr>
</tbody>
</table>